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This report discusses the application of a Bayesian calibration analysis to data from the
QASPR project at Sandia. The goal is to use experimental measurements of a response
value to obtain information about the “best” values for some of the inputs which go into
the corresponding simulator. The simulator is treated as an expensive black-box model,
so that only a finite number of runs are available. Towards this end, a fast Gaussian pro-
cess response surface approximation is used as an emulator for the simulator. It is shown
how the Bayesian framework will allow us to explicitly account for uncertainty present
in the experiments, the response surface approximation, and the results. In addition to
simple point estimates, we can obtain information on marginal and joint confidence inter-
vals/regions as well as correlations among the various parameters. A method for handling
multiple, correlated, response measures (such as occur over time) is also developed.

Nomenclature

Yobs Experimental measurement of response
M(·) Simulator output
M̂(·) Response approximation to simulator output
x Scenario descriptor inputs to simulator
θ Calibration inputs to simulator
N(µ, σ) Normal probability distribution with mean µ and standard deviation σ

Np(µ, Σ) Multivariate normal distribution of dimension p, with mean vector µ and covariance matrix Σ
π(·) Prior probability distribution
L(Y | θ) Likelihood function for θ, based on observed data Y

Gaussian process modeling
n Number of training points
d Number of input variables
q Number of trend basis functions
Y Response value
x Vector of input variables
f(x) Vector of q trend basis functions
β Coefficients of the trend function
σ2 Process variance of the GP
ξ Parameters of the correlation function
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I. Introduction

This report discusses the results of a “calibration” analysis of data from the QASPR (Qualification
Alternatives to the Sandia Pulsed Reactor) project at Sandia National Laboratories, which models the
effects of radiation on electronics. Although the term calibration has had various interpretations, a specific
meaning will be used here. By calibration, we mean using experimental observations of a response value to
inform upon, or learn about, uncertain input parameters which go into a computational simulation.

The science of model calibration, where the calibration analysis accounts for uncertainty and/or variabil-
ity, is relatively immature. See Refs. 1, 2 for overviews, and Refs. 3–5 for examples. Whereas most of the
simpler calibration methods are based on an optimization search for “best-fitting” values of the inputs, there
is much extra insight that can be had by approaching the problem from a probabilistic standpoint. By doing
so, we will be able to account for uncertainties which inevitably exist in the experimental observations, the
response surface approximation (if one is used), and also the results of the calibration. Thus, we can obtain
such information as confidence intervals for the calibrated parameters, as well as interaction information,
such as correlations.

It turns out the Bayesian framework provides a natural method for performing a calibration analysis
in a probabilistic setting. Not only can we account for the various uncertainties mentioned above, but we
will also be able to incorporate any prior information we may have about the parameters being calibrated.
The landmark paper dealing with Bayesian calibration was published by Kennedy and O’Hagan,3 and their
particular Bayesian model for calibration is often referred to as the “Kennedy and O’Hagan” framework.

Section II will introduce the Bayesian formulation for calibration, and Section III describes the imple-
mentation of the Gaussian process response surface approximation model. Section IV discusses the results
of the application to data obtained from the QASPR project at Sandia. This will include several different
analyses, including a study of the effect of the various boundary conditions and response measures. Finally,
Section IV.C illustrates a method for calibrating based on multiple (possibly correlated) response values
simultaneously. Additional analyses based on the results of Section IV are discussed in Section V.

II. The Bayesian model for calibration

Kennedy and O’Hagan3 begin by defining a very useful classification of the parameters which are inputs to
the simulation. They divide these inputs into two categories: “variable inputs” (what we will call “scenario
descriptors”), denoted by x, and “calibration inputs”, denoted by θ. The scenario descriptor inputs are
things like boundary or initial conditions, which are assumed to have known, and possibly even controllable,
values for each of the experiments. The calibration inputs are those that we wish to learn about, and we
want to think of them as having fixed but unknown values. Under this framework, we think of the calibration
inputs as being constant across the various scenarios, and not observable in the experiments.

The probabilistic model used by Kennedy and O’Hagan is

Y
(i)
obs = ρM(xi, θ) + δ(xi) + εi, (1)

where Y
(i)
obs is the ith observation of the response value, ρ is an unknown scale parameter, M(xi, θ) denotes

the response of the simulator (model) for inputs xi and θ, δ(·) is the “model inadequacy function”, and εi is a
random variable representing measurement error. Kennedy and O’Hagan assume the εi to be independently
normally distributed as N(0, σ2

exp).
The probabilistic model implemented in the following analyses is a simplification of the above model, so

that we have
Yobs = M(θ) + ε. (2)

(For now, we disregard the scenario variables, x, and consider that we are only calibrating based on obser-
vations for one scenario.) We have dropped the multiplicative and additive “inadequacy” terms ρ and δ(·).
We are thus assuming that for some “good” value of θ, our model is an accurate representation of reality.
We will again assume that the measurement error ε is normally distributed with a known variance, σ2

exp.
The model given by Eq. (2) implies what is known as a likelihood function for the unknown parameters θ,

based on the observed data Yobs. Since the observational data are fixed, the likelihood function depends on
θ only and is commonly written L(θ); for clarity, however, we express it here as L(Yobs | θ). This notation
emphasizes that the likelihood function is based on the distribution of the observed data. For the model
given by Eq. (2), the likelihood function comes from the following simple result:
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Yobs | θ ∼ N
(
M(θ), σ2

exp

)
. (3)

By applying Bayes’ theorem, we obtain the following posterior distribution for the calibration inputs:

f(θ | Yobs) ∝ π(θ)L(Yobs | θ), (4)

where π(θ) is the prior distribution for θ.
Although it is necessary to specify some joint prior distribution for the calibration inputs, this does

not mean that it is necessary to incorporate prior knowledge. It is possible to use vague, non-informative
prior distributions to represent a complete lack of knowledge with respect to the inputs, before observing
the outputs. For inputs which have support over the entire real line, this is most commonly done using
independently uniform prior distributions, so that the joint prior distribution for all calibration inputs is

π(θ) = constant. (5)

This prior distribution will result in a posterior which is exactly proportional to the likelihood function, so
that all of our knowledge comes from the data.

We may also incorporate bounds for any of the inputs into this prior distribution, so that we have

π(θ) =

{
constant, θ ∈ Ω
0, θ /∈ Ω

(6)

where the region Ω defines the bounds for the calibration inputs θ. This formulation will still yield a posterior
that is proportional to the likelihood, but it will also require that the posterior distribution lies inside Ω.

The process of obtaining the posterior distributions of the input variables is undertaken using Markov
Chain Monte Carlo (MCMC) sampling (specifically, the Metropolis algorithm is used; refer to Refs. 6 and
7, and also to the Appendix for computational notes). This requires thousands of evaluations of the model.
Since the model is typically expensive to evaluate (as with the QASPR model), a surrogate model, or
response surface approximation, may be used. For this analysis, a Gaussian process (Kriging) response
surface is implemented, and its parameters are estimated using the method of maximum likelihood (see
Section III).

One advantage of the Gaussian process response surface approximation model is that it gives information
regarding the usefulness of each of the inputs in predicting the output. This information is obtained through
the maximum likelihood estimates of the correlation parameters. Standardizing each input variable to have
the same variance will allow for a meaningful comparison of these sensitivities with each other. However,
since the likelihood function tends to be multimodal, the optimal parameters are sensitive to the starting
point used in the optimization algorithm. In addition, each optimal set of parameters will indicate somewhat
different “sensitivities”. However, the most important variables will usually be evident from one run of the
MLE code. This report will briefly explore the input/output sensitivity for the QASPR model, as well as its
dependence on the starting point of the MLE optimization algorithm.

Also, the uncertainty due to the predictions given by the Gaussian process model can be explicitly
accounted for and incorporated into the Bayesian analysis. Thus, we replace the true model M(θ) by the
Gaussian process model surrogate, M̂(θ), which is not deterministic, but is itself a random variable. The
distribution of M̂(θ) is defined by the parameters of the Gaussian process, and is written as

M̂(θ) ∼ N
(
µGP (θ), σ2

GP (θ)
)
. (7)

(µGP (·) and σ2
GP (·) are defined in Section III by Eqs. (13) and (14).) In many applications, µGP (θ) alone is

used as the emulator for the true model, but the Bayesian analysis allows us to incorporate the uncertainty
associated with each prediction, σ2

GP (θ). Thus, by replacing the slow simulator by a Gaussian process
surrogate model, we have the new probabilistic model

Yobs = M̂(θ) + ε. (8)

Since M̂(·) and ε have independent normal distributions, it is easy to show that the likelihood function is
now based on the following distribution:

Yobs | θ ∼ N
(
µGP (θ), σ2

GP (θ) + σ2
exp

)
. (9)
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III. Implementation of the Gaussian process response surface approximation

Gaussian process models have several features which make them an attractive choice for a response
surface approximation. The primary feature of interest is the ability of the model to “account for its own
uncertainty”. That is, each prediction obtained from a Gaussian process model also has an associated
variance, or uncertainty. This prediction variance primarily depends on the closeness of the prediction
location to the training data, but it is also related to the functional form of the response.

III.A. Prediction with a Gaussian process model

The basic idea of the GP model is that the response values, Y , are modeled as a group of multivariate normal
random variables. A parametric covariance function is then constructed as a function of the inputs, x. The
covariance function is based on the idea that when the inputs are close together, the correlation between the
outputs will be high. As a result, the uncertainty associated with the model’s predictions is small for input
values which are close to the training points, and large for input values which are not close to the training
points. In addition, the GP model may incorporate a systematic trend function, such as a linear or quadratic
regression of the inputs. The effect of the mean function on predictions is typically only important when the
model is used for extrapolation.

We will denote by Y a Gaussian process with mean and covariance given by

E[Y (x)] = fT (x)β (10)

and
Cov[Y (x), Y (x∗)] = σ2c(x,x∗ | ξ), (11)

where fT (x) defines q basis functions for the trend, and is given by 1 for a constant trend and [1 xT ]T for
a linear trend, β gives the coefficients of the regression trend, c(x,x∗ | ξ) is the correlation between x and
x∗, and ξ is the vector of parameters governing the correlation function.

Consider that we have observed the process at n locations (the training or design points) x1, . . . ,xn of a d-
dimensional input variable, so that we have the resulting observed random vector Y = (Y (x1), . . . , Y (xn))T .
By definition, the joint distribution of Y satisfies

Y ∼ Nd

(
fT (x)β, σ2R

)
, (12)

where R is the n × n matrix of correlations between the training points. Under the assumption that the
parameters governing both the trend function and the covariance function are known, the expected value
and variance (uncertainty) at an untested location x∗ are calculated as

E[Y (x∗)] = fT (x∗)β + rT (x∗)R−1(Y − Fβ) (13)

and
Var [Y (x∗)] = σ2

(
1− rT R−1r

)
, (14)

where F is an n × q matrix with rows fT (xi) (the trend basis functions at each of the training points),
and r is the vector of correlations between x∗ and each of the training points. When the coefficients of the
trend function are not known, but are estimated using a generalized least squares procedure, or equivalently,
maximum likelihood, the variance becomes:8

Var [Y (x∗)] = σ2

{
1− rT R−1r +

[
f(x∗)− F T R−1r

]T [
F T R−1F

]−1 [
f(x∗)− F T R−1r

]}
, (15)

which can also be written as

Var [Y (x∗)] = σ2 −
[
fT (x∗), rT

] [
0 F T

F R

]−1 [
f(x∗)

r

]
. (16)
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There are several different methods of parameterizing the correlation function. The form implemented
by this author is the squared exponential form, given by

c(x,x∗) = exp

[
−

d∑
i=1

ξi(xi − x∗i )
2

]
, (17)

where d is the dimension of x, and the d parameters ξi must be non-negative. The exponent must lie in
the range [0, 2] in order for the covariance matrix to be positive definite, but the value 2 is usually chosen
because it produces a function that is infinitely differentiable. This form of the correlation function dictates
that the degree of correlation of the outputs depends on the closeness of the inputs.

Also, the relative magnitudes of the parameters ξ specify the amount of importance each dimension of x
has in predicting the output Y : a large value for ξi (which is akin to a small correlation length) indicates a
high amount of “activity” (and likewise a low amount of correlation) in that direction. For example, if the
response is independent of one of the inputs, then that input will have an infinite correlation length (because
the response does not change in that direction) and a ξ of 0. Thus, the relative magnitudes of the ξi connote
the global sensitivity of the response to the inputs.

Finally, a constant trend function is implemented for all GP models reported here. This is because
no systematic trends are evident from simple input/output plots, and the constant trend gave the best
performance over linear and quadratic trends when compared using a simple cross validation exercise.

III.B. Parameter Estimation

Before applying the Gaussian process model for prediction, values for the parameters σ2, ξ, and β must be
set. There are several methods used in practice to estimate good values of the parameters governing the
GP.9 This paper will employ the method of maximum likelihood estimation (MLE).

Maximum likelihood estimation is based on the assumption that the response values follow a multivariate
normal distribution. We parametrize the mean and covariance of this distribution, and then estimate the
“best fitting values” of these parameters giving the training data. Thus, the likelihood function is simply
given by the joint PDF of the observed responses, as in Eq. (12).

For computational reasons, it is easier to work with the log of the likelihood when performing maxi-
mum likelihood estimation. We express our objective function using the negative log of the likelihood (in
consideration of minimization), and dropping constants, as

NL = n log σ2 + log |R|+ 1
σ2

(Y − Fβ)T R−1(Y − Fβ). (18)

The gradients of NL with respect to σ2, xi, and β can all be derived analytically.9,10 Further, we can
solve for the zero gradients with respect to σ2, and β, yielding their conditional optima as:

σ̂2 =
1
n

(Y − Fβ)T R−1(Y − Fβ), (19)

and
β̂ =

(
F T R−1F

)−1

F T R−1Y . (20)

We thus minimize the negative of the “profile log likelihood”, which can be defined as

NL∗ = n log σ̂2 + log |R| , (21)

with β replaced by β̂.
The numerical minimization of Eq. (21) is carried out with respect to the parameters ξ. Since analytical

gradients are also available with respect to ξ, we can make use of gradient based optimization routines. For
this work, a form of the BFGS algorithm is used to find the optimum values for ξ. Recall that the values of
ξi have an interpretation regarding the global sensitivity of the response to each input. Thus, we take the
MLE estimates of each ξi as a “relative importance” measure of the ith input in predicting the response.
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IV. Application to QASPR data

We now discuss the application of the above calibration methodology to data from the QASPR simulation.
The QASPR (Qualification Alternatives to the Sandia Pulsed Reactor) project consists of several levels of
code from the atomic scale to the circuit level which model radiation effects on electronics. The data we
work with comes from the “1D-code”, which deals with effects at the device level. The response, or output,
for this code is gain (a current ratio) versus time. For both the experiments and the simulations, we have
the response value at four different time instances (these times correspond between the experiments and
simulations).

First, consider the classification of the inputs, as defined by Kennedy and O’Hagan.3 For the scenario
descriptors, we have one “variable”, which takes three discrete scenarios, which we will call “Q1, Q2, and
Q3”. These conditions represent three different bias voltages applied to the transistor at the time of the
radiation pulse. Note that some authors might classify time as a scenario descriptor, since the response is a
function of time. However, this can be dangerous because each individual experiment will yield measurements
of the response at various discrete time intervals. If the experiment is repeated, the responses at these time
intervals will have some correlation structure. This is not the case for the usual scenario variables, because
each scenario will correspond to a completely different experiment. Thus, we do not want to assume that
experimental measurements of the response at different times are independent.

As for the calibration inputs, the 1D-code has 12 variables (reduced from an originally much larger
number, using a preliminary sensitivity analysis). Our prior information on these parameters consists only
of the reasonable bounds for each. For each of the Q1, Q2, and Q3 scenarios, 300 runs of the simulator are
available, corresponding to randomly chosen values of θ. Thus, we choose the prior distribution for θ to be
independently uniform over the bounds, so that we have the prior given by Eq. (6). The use of a bounded
prior distribution is helpful when using a response surface approximation because the predictions given by
the response surface can only be expected to be valid within the ranges of the training data (which will
usually correspond to the prior bounds).

For each analysis, the value of σexp is set to ten percent of the corresponding experimental observation.
This is admittedly arbitrary, and likely underestimates the uncertainty associated with each experimental
observation. However, in many cases, the experimenter will be able to characterize, at least roughly, the
uncertainty, repeatability, or error associated with his or her measurements. Such estimates could then be
used to determine a value for σexp. Alternatively, if data are available from repeated experiments, σexp could
be estimated directly from the data or treated as an uncertain variable inside the Bayesian analysis.

The following section will report the results for a “nominal” case. This will be for the Q1 data set,
considering response 1 only. In later sections, various other scenarios are considered so that the results can
be compared to the nominal case. In the ideal world, if the simulation model captures the physics correctly,
the results of the calibration exercise would be similar for each data set, since in theory the “true” value of
θ does not depend on the scenario x.

IV.A. Nominal case

For the “nominal case” we consider the Q1 data, and update the inputs based only on the observation of
response 1. Since the optimal MLE parameters of the GP response surface approximation depend somewhat
on the starting point given to the optimizer, some method is needed to decide which parameters will be
used for the nominal GP model. Here, the decision is based both on comparing the objective function values
at different starting points and cross-validation type exercises in which the model is used to predict points
which are left out of its design.

The apparent sensitivities of the response to the inputs obtained from the nominal Gaussian process
model correlation parameters are illustrated graphically in Figure 1. It appears that for this data set, inputs
number 6 and 11 are the most important in predicting the value of response 1. Also, inputs 3, 7, 10, and 12
seem to have very little effect on the output, and could probably be removed from the analysis.

To illustrate the form of the response, several input/output plots based on the Gaussian process model
are constructed. We will look at response 1 versus inputs 6 and 11 (the 2 most important inputs) and
response 1 versus inputs 2 and 8 (the next 2 most important inputs). In each case, the values of the 9 other
inputs are held constant a. Figure 2 plots response 1 as a function of inputs 6 and 11 as both a mesh plot and

aThe particular values of the non-varying inputs are chosen based on the results of the following calibration analysis. The
values used are the estimated joint mode of the inputs, based on the observation of response 1. This means that the response
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Figure 1. Sensitivity analysis based on nominal GP correlation parameters

a contour plot. The contour plot helps to illustrate the particular region of these inputs which matches well
with the experimental observation (which is 0.41 for this case). A mesh/contour plot of σGP is also given
to illustrate how the response surface approximation uncertainty varies in this domain. The corresponding
3 plots are also given for inputs 2 and 8 in Figure 3.

After specifying the GP response surface model, MCMC simulation is used to estimate the updated
distributions of the inputs. The resulting estimated posterior probability distributions for the 12 inputs
are plotted below in Figure 4. The range of each plot is the same as the prior bounds used for that input
variable. The dotted black line represents the prior probability distribution, for comparison. For each
input, the posterior is plotted by fitting a beta distribution to 25,000 random MCMC samples. The beta
distribution is chosen because of its flexibility in fitting a variety of shapes, and also because the distribution
for each variable has an upper and lower bound.

Notice that for inputs 3, 4, 7, 10, and 12, the the updated distributions have not deviated significantly
from their uniform priors. This means that marginally, all values within the respective ranges are equally
effective at yielding a response consistent with the observation. Also, the most profound changes are for
variables 2, 5, 6, 8, and 11, indicating that these are the most important variables to consider when calibrating
the model (this is as expected, given the sensitivity analysis of Figure 1). We can see that for effectively all
of the variables, “better” values of the inputs correspond to larger values.

In addition, the updating of the response value is illustrated in Figure 5. This figure shows the ap-
proximate distribution of the response for the 300 true model evaluations, the assumed likelihood function
for the single observation (the experimental uncertainty/variability), and the posterior distribution of the
response (the posterior distribution of the response is an output of the MCMC simulation: it is the value of
µGP (θ) for each accepted sample of θ). Since we have used independent uniform priors for the inputs, we
expect the posterior to be proportional to the likelihood function of the experiment. This would be the case
exactly, except that we are using a response surface approximation, which has its own uncertainty (recall
that this uncertainty is accounted for by the full likelihood function of Eq. (9)). The additional uncertainty
added by the response surface approximation causes the variance of the posterior to be greater than the
variance/uncertainty of the experiments. In addition, the posterior is “pulled” very slightly away from the
data towards the area where there is less response surface approximation uncertainty. Since most of the
original model runs correspond to values of the response which are less than the observation, the posterior
shifts slightly away from the data in this direction.

plots will be (at least somewhat) relevant to the posterior distributions of the inputs
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(a) Response based on Gaussian process model (µGP ) (b) Contour plot of response based on Gaussian process
model (µGP )

(c) Uncertainty (σGP ) associated with Gaussian process
model

Figure 2. Gaussian process approximation to response 1 based on inputs 6 and 11
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(a) Response based on Gaussian process model (µGP ) (b) Contour plot of response based on Gaussian process
model (µGP )

(c) Uncertainty (σGP ) associated with Gaussian process
model

Figure 3. Gaussian process approximation to response 1 based on inputs 2 and 8
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Figure 4. Posterior probability distributions for Q1 data based on response 1, one observation: “nominal case”. (Prior
distributions given by dotted lines.)
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Figure 5. Distribution of original model runs, experimental uncertainty, and posterior for response 1
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IV.B. Comparative studies

In this section we consider how the results compare when we consider different parameters for the GP model,
using the data for other scenarios (Q2 and Q3), and updating the inputs based on a different response. It
is important to consider the effects of using different parameters for the GP model because the calibration
results will depend completely on the response surface approximation, and the parameters governing the GP
model found by MLE can vary depending on the starting point given to the optimizer. Further, we would
like to see that the calibration results are the same regardless of what scenarios or response functions are
used.

IV.B.1. Effect of Gaussian process model parameters

Here we will re-run the “nominal” calibration process using different values for the parameters governing
the GP model. The optimal parameters for the GP model in the “nominal” case were found by giving the
optimizer a starting value of 0.4 for all correlation parameters. However, if this initial value is changed
slightly to 0.2 or 0.6, a different local maximum of the likelihood function will be found. Thus, we want to
study how much the calibration results will change if different GP parameters are used.

We will consider giving the correlation parameters, ξ, starting values of 0.2 and 0.6 in the MLE opti-
mization routine, whereas 0.4 was used for the nominal case. The resulting MLE estimates found by the
optimizer for these starting values are summarized in Figure 6. The y-axis shows the value of each ξi found
by the optimizer, which is an indication of that inputs relative importance in predicting the output. The
value of “Lhood” indicates the relative magnitude of the likelihood function, so that we can compare the
quality of the various local optima.

(a) Correlation parameters, starting value 0.6 (b) Correlation parameters, starting value 0.2

(c) Correlation parameters, starting value 0.4 (nominal
model)

Figure 6. Comparison of optimal correlation parameters found by MLE, given different starting values
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We can see that the optimal parameters are almost identical for the starting values of 0.2 and 0.4.
However, a slightly different optimum is found for the starting value of 0.6. The optimum found for 0.6 has
a lower likelihood, and more of the correlation parameters are given very small values, indicating they are
not important. However, both this case and the nominal case still indicate that inputs 6 and 11 are the most
important in predicting the output.

Since the GP parameters for the starting value of 0.2 differ significantly from the nominal case, we will
perform the same calibration analysis as was done in Section IV.A and compare the results. Based on
the marginal posteriors, the difference between the results based on the two different GP models is not
discernible, giving an indication that the results may not be too sensitive to the formulation of the Gaussian
process model.

IV.B.2. Effect of scenarios

Here we compare the results of calibrations based on different scenarios. The nominal case corresponds to
the scenario Q1, and we will compare these results to calibrations based on data for scenarios Q2 and Q3.
For all cases we use 300 runs of the simulation model, however, they do not correspond to the same values
of θ.

The results of the GP model parameter estimation are shown below in Figure 7. Here we see that the
correlation parameters change somewhat when the scenario is varied. Overall, inputs 6, 11, 2, and 8 seem
to be very important to the response function described by the simulation.

(a) Correlation parameters for Q1 data (nominal case) (b) Correlation parameters for Q2 data

(c) Correlation parameters for Q3 data

Figure 7. Comparison of correlation parameters for different scenarios

Now consider a plot of the predicted and measured responses, as a function of the scenario, shown in
Figure 8. We quickly see that, on average, the simulator is under-predicting for Q1, shows little bias for
Q2, and over-predicting for Q3. This indicates a strong systematic dependence of the bias on the particular
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scenario. It is easy to see that, without the full Kennedy and O’Hagan model of Eq. (1), this type of bias
variation will be very difficult for the Bayesian model to handle, since “good” values corresponding to one
scenario may very well be “bad” for another scenario.

Figure 8. Predicted and measured values of response 1, as a function of the scenario

A comparison of the Bayesian calibration for each scenario is shown below in Figure 9. The results
indicate that there is more disagreement here than when changing only the Gaussian process model. We see
that in particular, inputs 1, 2, 5, 6, and 12 do not calibrate to the same region based on the 3 different data
sets. There appear to be possible discrepancies for inputs 1 and 6. These inputs calibrate towards medium
values when using the Q3 data, but they calibrate towards high values for the Q1 and Q2 data. This is
not surprising, given the systematic dependence of the bias on the scenario. A single calibration based on
multiple scenarios will be considered in Section IV.C.2.
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Figure 9. Comparison of calibration results for boundary conditions Q1, Q2, and Q3. The red curves represent the Q1
(nominal) condition, the blue represent Q2, and the green Q3. All results based on response 1 only.
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IV.B.3. Effect of time

In this section we consider, all else equal, the effect of updating the distributions based on response 4 as
opposed to response 1. Figure 10 plots the response as a function of time for the Q1 scenario. As with
the various scenarios, we see that the discrepancy between the simulator and the experiments changes over
time. For “response 1” (10−4 seconds), the simulator tends to under-predict the experiment, but on average
this bias goes towards zero as time increases. The change of bias is not as pronounced as with the various
scenarios.

Figure 10. Predicted and measured response for Q1, as a function of time

However, we must keep in mind that these responses are measurements of the same quantity at different
time instances, so we would expect the experimental measurements to have some correlation. Since there are
no repeated experiments available, we estimate the correlation based on the simulator runs. Based on the
300 simulation runs, the linear correlation coefficient between responses 1 and 4 is 0.56, indicating moderate
correlation. However, the two responses are related to different physics phenomena, so it is possible that the
calibrated parameters based on each could be different.

The results of the GP maximum likelihood estimation are shown in Figure 11. We see that more of the
inputs appear to be relevant to response 4 than response 1. In particular, input 9 appears to play a large
role in predicting response 4.

The results of the Bayesian calibration, updating based on response 4 (using the Q1 data) are shown in
Figure 12. The results here are similar to those of the scenario comparison, in that different inputs have
become important, and these new inputs become central to the calibration updating. The main differences
here are for inputs 1, 5, 6, 7, 9, and 11. When calibrating based on response 1, inputs 1, 5, 6, and 11 want
to increase, whereas when using response 4, inputs 7 and 9 want to increase. But this does not necessarily
mean that the two calibrations are inconsistent with each other, since flat posterior distributions indicate an
input which takes on all values in the range. A joint analysis will be required to better explore how the two
conditions interact with each other (see Section IV.C.1).
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Figure 11. Correlation parameters (sensitivity) for predicting response 4
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Figure 12. Comparison of calibration results based on response 4 versus response 1, for Q1 data. The red curves
represent response 1 (nominal), while the blue represent response 4.
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IV.C. Calibration based on multiple response values

IV.C.1. Multiple time responses

Note that all of the preceding analyses were based on one response value only, whereas both the simulation
model and the experimental observations consist of measurements of the response at 4 distinct time instances.
Ideally, we would like for our calibration to be based on all response outputs, instead of just 1. This section
will discuss a method for updating the inputs based on all 4 response measures, simultaneously.

First, we must consider the statistical properties of the 4 responses. If they are correlated (as we would
expect, since they are measurements of the same quantity at different times), then we can not treat them
as if each response is independent of the others. For example, if the 4 responses are perfectly correlated,
then three out of four of the responses do not contain any additional information, and it is incorrect to
treat them as if they do. The information about the response correlations exists in the Bayesian calibration
process through the joint likelihood function. For example, when updating based on multiple correlated
responses, the likelihood function is based on the following distribution (whereas it was previously based on
the distribution of Eq. (3):

Y obs | θ ∼ Np(M(θ), Σ), (22)

where the responses, Y and M(θ), are now vectors of dimension p, and Σ is the covariance matrix of the
observations. Thus, the information about the correlations is captured by Σ. Just like we assumed that the
observations followed a normal distribution in the original model, Eq. (22) states that we are now assuming
that the responses together follow a multivariate normal distribution.

In many cases we will not have enough experimental observations to directly estimate Σ. In such
situations, one possibility is to estimate the correlation structure based on the simulator runs, and use
the assumed values for the individual variances based on experimental error assumptions. Thus, we might
construct Σ as

Σi,j = ρi,jσ
(i)
expσ

(j)
exp, (23)

where ρi,j is the correlation between responses i and j, as estimated from the simulator data, and σ
(i)
exp is

the (assumed) standard deviation corresponding to the experimental observation of response i. The reason
for not estimating Σ exclusively from the simulator data is that we do not necessarily expect the variances
of the simulator output to correspond to those of the experiments.

With the addition of the response surface approximation, the likelihood function for θ is now based on
the distribution

Y obs | θ ∼ Np

(
M̂(θ), Σ + ΣGP

)
, (24)

where ΣGP is a diagonal matrix with elements σ2
GP (θ) corresponding to the Gaussian process approximation

for each response. Using Eq. (24), we could proceed with the Bayesian analysis. For the QASPR data, this
would not be excessively expensive, since there are only 4 responses. However, we will present a method
here which is applicable even when the time response is highly multivariate. Since the development of the
response surface can be difficult when there are a large number of time intervals indexing the responseb,
we will illustrate how principal components analysis (PCA) can be used to reduce the dimensionality of the
response.

To illustrate the method, consider the QASPR data, for the Q1 scenario. PCA effects a transformation
into an uncorrelated space based on the eigenvectors of the covariance or correlation matrix (the correlation
matrix is used to reduce the effect of variance on the transformation). The correlation matrix of the 4 time
responses based on the 300 true model evaluations is estimated as

R =


1.00 0.97 0.86 0.56
0.97 1.00 0.95 0.69
0.86 0.95 1.00 0.86
0.56 0.69 0.86 1.00

 (25)

bIn such a case there are two options, both of which are non-trivial: either develop a separate response surface for each time
response, or include time as an extra input variable.
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Using PCA, the transformation is given by the eigenvectors, A; the corresponding eigenvalues, λ, of R
represent the amount of variance explained by each principal component:

A =


0.49 0.54 −0.55 0.40
0.53 0.29 0.18 −0.78
0.53 −0.13 0.69 0.47
0.45 −0.78 −0.43 −0.09


λ =

[
3.458 0.504 0.0336 0.0042

] (26)

First, the eigenvalues tell us that using the first two principal components only, we can explain 99.1% of
the variance of the original variables. This allows us to reduce the number of variables from 4 to 2. Also,
the columns of A represent the transformations corresponding to each component. We see that the first
component is effectively an average of the 4 original variables. This is typical when the variables are highly
correlated. The second component is made up mostly of the 1st and 4th original variables, which makes
sense because they each contain slightly different information.

Thus, using only the first two principal components, our transformation matrix is given by

A(2) =


0.49 0.54
0.53 0.29
0.53 −0.13
0.45 −0.78

 (27)

Since our analysis is based on the correlation matrix as opposed to the covariance matrix, we must first
standardize the original variables by dividing by their standard deviations. Secondly, we note that less
information is lost in the reverse transformation when the variables are close to the origin. Because of this,
we want to shift the original variables to have a mean of 0. For the calibration exercise, we will actually
shift by the observed response values because this is what we are calibrating to. Thus, we can represent the
forward and reverse transformations as

z = AT
(2)y

′ (28)

and
y′ = A(2)z, (29)

where y′ = D−1
s (y−yobs), (lower case yobs is used here to represent the fixed realization of the experiment),

and Ds is the diagonal matrix of standard deviations (corresponding to Σ above, so that Ds contains the
standard deviations of the experimental observations).

Based on Eq. (22), it can be shown that we have the following distributions for the transformed experi-
mental observations:

Y ′
obs | θ ∼ N4

(
D−1

s

(
M̂(θ)− yobs

)
, R

)
(30)

and
Zobs | θ ∼ N2

(
AT

(2)D
−1
s

(
M̂(θ)− yobs

)
, AT

(2)RA(2)

)
. (31)

In addition to reducing the response dimensionality from 4 to 2, the principal components analysis also yields
variables (Zobs) which are uncorrelated. Since we are assuming joint normality, as per Eq. (22), this also
implies that the components are independent, which simplifies the likelihood calculations somewhat.

Now that we have established our variable transformation to 2 principal components, z, we build two
response surface approximations based on the transformed simulator data, z1 and z2, given by Eq. (28). In
addition, we also transform our experimental observations, but in light of the fact that we are shifting by
the value of the experimental observations, we conveniently have zobs = 0.

The resulting maximum likelihood estimates for the correlation parameters, ξ, for the 2 Gaussian process
models are illustrated below in Figure 13. We notice that the parameters based on the 1st component are very
similar to the nominal model, with input 8 having more importance. However, the correlation parameters
based on the 2nd component indicate that almost all of the inputs are relevant. Thus, the second component
may be capturing a somewhat more complicated behavior than the first. Also notice that the parameters
for the 2nd principal component are similar to those based on response 4 (see Figure 11).
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(a) Correlation parameters for GP model of z1 (b) Correlation parameters for GP model of z2

Figure 13. Correlation parameters for Gaussian process models based on 1st 2 principal components of all 4 responses

The results of the calibration process are given in Figure 14. Compared to the calibration results based
only on 1 response, it is clear that it takes a much more precise combination of inputs to get good agreement
for all 4 response values simultaneously. Unlike before, almost all of the inputs now have specific posterior
ranges, as opposed to having support along their entire bounds.

Figure 15 illustrates the agreement between the model predictions and the experimental observations,
after updating the input distributions. The posterior distributions of three of the response values are plotted
(response 3 is omitted for clarity), along with the likelihood function corresponding to each response. We
can see that the updated predictions match very well with the observations for all 4 responses. Recall that
MCMC simulation was conducted on the transformed variables (principal components). Thus, to plot the
posterior distributions of the original variables, the reverse transformation given by Eq. (29) is employed.
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Figure 14. Calibrated input distributions based on all 4 responses, using the first 2 principal components
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Figure 15. Updated output distributions for responses 1, 2, and 4 (response 3 omitted for clarity) resulting from the
calibration based on 2 principal components of all 4 response measures. Updated model outputs given by solid black
lines; experimental observations given by dashed blue lines.
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IV.C.2. Data from multiple scenarios

We may also want to calibrate the model based on data from 2 or more scenarios simultaneously. The
analysis will be similar to that for multiple response values. However, there is a difference in that we do
not need to worry about correlations between the experiments for different scenarios. Since the experiments
corresponding to each scenario are completely separate from each other, we can safely assume that the
experimental measurements for Q1, Q2, and Q3 are independent of each other.

Here we perform the calibration based on response 1 only, using the Q1 and Q2 data. As mentioned
before, this requires separate Gaussian process surrogate models for each the simulator response of each
scenario. The results are shown below in Figure 16.

Figure 16. Calibrated input distributions based on both Q1 and Q2 data, response 1 only.

In addition, Figure 17 shows the updated response distributions for both the Q1 and Q2 scenarios. It
appears that these calibration results can give predictions which are consistent with the data for both the
Q1 and Q2 scenarios, simultaneously.

Recall from Section IV.B.2 that the calibration results based on Q1 and Q2 individually were not incon-
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Figure 17. Updated output distributions for Q1 and Q2 scenarios, based on one calibration using both data sets.
Updated model outputs given by solid black lines; experimental observations given by dashed blue lines.

sistent. However, from Figure 9, there appears to be a possible inconsistency between Q1 and Q3, for some
of the inputs. This inconsistency is expected, given how different the discrepancy between the simulator and
experiments is for Q1 and Q3 (see Figure 8). The result is that the calibration based on both the Q1 and
Q3 data does not give satisfactory results (i.e., the posterior distributions of the responses are not consistent
with the data). This is a strong indication that more attention should be given to the physics simulation
to try and understand why the bias is so different for the various scenarios, because if the simulation is
to be used for extrapolation to an untested scenario, such changes in the bias could render the predictions
unusable.
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V. Further analysis of results

This section will briefly consider some cross-validation analyses of the calibration results. The purpose
is to attempt to develop confidence in our interpretations and usages of the resulting input distributions.

V.A. Interpretation of posterior distributions

First, we note that the 1-dimensional posterior distributions for the inputs shown in Section IV do not
capture all of the information about the joint distribution of the inputs. This is because correlations can
exist among the inputs, and this problem is further complicated by the fact that the joint posterior is not
multivariate normal. Since the marginal posteriors are non-normal, it is even insufficient to specify the
full joint distribution using the marginal distributions and correlation coefficients. Thus, the only reliable
samples from the joint posterior are those from the MCMC chain generated by the calibration process.

This effect is illustrated in Figure 18, by fitting independent beta distributions to each input variable’s
posterior (beta distributions are used because they are extremely flexible at fitting a variety of distributional
forms, and because they have support over a finite range, like the posteriors). 25,000 random values were
then generated from these independent distributions and propagated through the GP model. Although
the location of the response does not change too much, the uncertainty has increased significantly. This is
because the use of independent beta distributions has not captured correctly the joint posterior distribution
of the inputs and its associated correlation structure.

Figure 18. Updated response for nominal case, compared with re-propagation of inputs through GP model assuming
independent beta distributions

Two of the largest correlations between the updated inputs are between inputs 2 and 6, and between
5 and 11. Contour plots are shown for the two pairwise joint densities using two-dimensional histograms
in Figures 19 and 20. It is clear from the two-dimensional plots that the variables can not be treated as
independent. Using Spearman’s ρ, a non-parametric correlation measure, the correlations are −0.26 and
−0.29, which seem fairly mild. However, as more variables are considered together, the correlation structure
can only become more complicated, further reinforcing the fact that it is dangerous to assume the updated
probability distributions to be independent of each other.

Note that we can use the contour plots to express pairwise joint confidence regions for two parameters at
a time. Each contour line represents a confidence region at a particular significance level. Although there are
several different ways of expressing confidence regions, the use of contour lines from a joint density estimate
corresponds to what is known in the Bayesian literature as “Highest Density Regions” (HDR’s).11 A HDR
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Figure 19. Estimated joint density of inputs 2 and 6

Figure 20. Estimated joint density of inputs 5 and 11
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is a region such that the probability density at all points inside the region is greater than that for all points
outside the region.

V.B. Prediction across models

Here we will see how well we can use the calibration results from one model (i.e., a particular scenario or
time response) to make predictions using a different model. (However, given Figures 8 and 10, we do not
expect the results to predict well across time and scenario.) We will continue to use the “nominal” (Q1,
response 1) model as our base case, and we will test whether the calibrations resulting from the other models
can predict the experimental response for the nominal model. This is a test of both the calibration process
and physical model itself, since these cross-predictions will only work if the physical model is in some sense
correct.

First, we consider what happens if we take the updated input distributions obtained using one Gaussian
process model, and propagate them through a different Gaussian process model of the same simulator data.
We will do this by revisiting the analysis of Section IV.B.1. We will take the results obtained using the
alternate GP model and plug them into the nominal GP model. Ideally, the resulting distributions should
be the same, since the two response surfaces are modeling the same data. The results are shown in Figure 21.
We see that the resulting distributions are only slightly different. This is an indication that the calibration
process may be only slightly sensitive to the particular formulation of the response surface approximation
model.

Figure 21. Resulting response distribution obtained by plugging the calibration results obtained from the alternate
GP model into the nominal GP model

Next, we consider the performance when the results based on one particular scenario or response measure
are used to predict at another. We illustrate this effect by using the results of the Q2 and Q3 scenarios
(response 1), as well as those of Q1, response 4, to predict the output for the “nominal” case (Q1, response
1). This is simply done by plugging the MCMC output samples for the alternative cases into the nominal GP
model. The results are shown below in Figure 22. Unfortunately, the calibrated input distributions do not
give accurate performance for predicting scenarios or response measures other than those with which they
were calibrated. This could be an indication that the physics simulation is not modeling the experimental
data correctly.
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(a) Comparison with results from Q2 condition (b) Comparison with results from Q3 condition

(c) Comparison of results for response 4, Q1

Figure 22. Performance of updated input distributions for predicting the response at different scenarios and response
measures.
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VI. Conclusions

A Bayesian calibration methodology is presented and applied to data from the Sandia QASPR project.
The methodology is used to update belief about the “best” values of the uncertain input parameters to a
simulation, using experimental measurements of its response value. Since only a finite number of runs of the
simulator are available, Gaussian process response surface approximations are constructed as fast emulators
for the true simulation. It is shown how the Bayesian framework allows us to account for uncertainty in the
experimental measurements, the response surface approximation, and the results of the calibration.

One interesting conclusion is that the interpretation/presentation of the results of the calibration analysis
is not trivial. As discussed in Section V.A, ignoring the full correlation structure of the updated distributions
will result in a large overestimate of the uncertainty. Given the importance of the joint structure, marginal
posterior distributions and confidence intervals should be used with caution. Additionally, it is difficult to
express the resulting distribution information when there are multiple inputs being updated. Joint distribu-
tions can only be visualized in two dimensions, and the expression of confidence regions in more than two
dimensions becomes very difficult. Thus, there exists the potential for future work to address the task of
constructing “summary statistics” based on random samples of a high-dimensional random variable.

Also, only mild success is achieved in attempting to make use of multiple scenarios and/or responses
simultaneously for calibration. However, this is an important step, since real world applications will want
to make use of all available data when calibrating a simulation. The difficulty seen here is most likely due
to the way the discrepancy between the simulation output and the experiments appears to depend on the
particular scenario or response function (refer to Figures 8 and 10). One possible way to deal with this
problem is to make use of the full probabilistic model of Eq. (1). This model, although more complicated,
allows the analyst to model the discrepancy between the predictions and observations as a random process,
δ(x). The implementation of this full model is certainly an area for future study.
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Appendix

MCMC implementation

For all calculations reported here, the posterior distributions were estimated using Markov Chain Monte Carlo
(MCMC) sampling. The particular algorithm implemented here is known as the Metropolis algorithm.6 The
Metropolis algorithm can be used to generate random samples from any probability density which is known
up to a proportionality constant (it turns out that the intractable part of expressing the Bayesian posterior
analytically is the evaluation of a complicated integral, which is just a constant).

A sequential form of the algorithm is implemented here, so that candidate moves on each component
(variable) are made one at a time. These candidate moves are generated from what is known as a proposal
density, and random walk proposals are used here. For each component, the variance of the random walk is
adjusted so that the observed acceptance ratio is approximately 0.3 for each variable.

Convergence of the sampling chain to the target distribution is often an issue when using MCMC methods.
Convergence is usually assessed by looking at trace plots of the samples and checking for stationarity. It is
often the case that some number of “burn-in” samples must be discarded, so that the chain is allowed time
to reach its stationary distribution. However, convergence is not found to be an issue for the calculations
done here, given that an appropriate starting value is used (a good choice is a value close to the “best” of
the true simulator runs). For each case, 25,000 random samples were generated for the calibration inputs,
and no burn-in samples were needed.

It is of note that when using a response surface approximation, bounded prior distributions help to keep
the calibration inputs from straying into regions of large response surface uncertainty. This is especially
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important if the response surface uncertainty is not being accounted for, because the MCMC chain may
attempt to wander outside the range of the training points, in which case the predictions given by the
response surface may not be trustworthy.
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